Morbidity and functional outcomes of open and robotic salvage radical prostatectomy: data from a large, recent, multicenter series

Giancarlo Marra¹, Paolo Gontero¹, Paolo Alessio¹, Giorgio Calleris¹, Antonino Battaglia^{1,10}, Claudia Filippini², Stefania Munegato¹, Fernando Munoz³, Marco Oderda¹, Anna Palazzetti¹, Francesca Pisano^{1,9}, Umberto Ricardi⁴, Estefania Linares⁵, Rafael Sanchez-Salas⁵, Ben Challacombe⁶, Paul Cathcart⁶, Prokar Dasgupta^{6,25}, Sanchia Goonewardene⁶, Rick Popert⁶, Declan Cahill⁷, David Gillatt⁸, Raj Persad⁸, Juan Palou⁹, Steven Joniau¹⁰, Thierry Piechaud¹¹, Salvatore Smelzo¹¹, Alexandre De La Taille¹², Morgan Roupret¹³, Simone Albisinni¹⁴, Roland van Velthoven¹⁴, Alessandro Morlacco¹⁵, Sharma Vidit¹⁵, Giorgio Gandaglia¹⁶, Alexander Mottrie¹⁶, Joseph Smith¹⁷, Sheryas Joshi¹⁷, Gabriel Fiscus¹⁷, Andre Berger¹⁸, Monish Aron¹⁸, Andre Abreu¹⁸, Inderbir S. Gill¹⁸, Henk Van Der Poel¹⁹, Derya Tilki^{20,21}, Nathan Lawrentschuk^{22,23}, Declan G Murphy^{22,23}, Gordon Leung²⁴, John Davis²⁴ and Robert Jeffrey Karnes¹⁵

1) San Giovanni Battista Hospital, Gittà della Salute e della Scienza, University of Turin, Turin, Italy: 2) Department of Statistics, University of Turin, Turin, Italy: 3) Department of Radiotherapy, Parini Hospital, Aosta, Italy, 4) Department of Oncology, University of Turin, Turin, Italy: 5) Institut Mutualiste Montsouris, Paris, France: 6) Urology (entre, Guy's Hospital, London, UK 7) Royal Marden Hospital, Indon, UK 8) Bristol NHS Foundation Trust, Bristol, UK 9) Fundaciò Puigvert, Barcelona, Spain: 10) Leuven University Hospitals, Leuven, Belgium; 11) (Unique Saint Augustin, Bordeaux, France; 12) (HU Mondor, Créteil, France; 13) Sorbonne Université, Hörial Phité-Salpétrière, Paris, France; 14) Institut Jules Bordet, University Liebe & Brunelles, Belgium; 15) Mayo Clinic, Rochester, MN, USA; 16) UCI Hospital, Aast, Belgium; 17) Vanderbilt University, Medica (enter North, Nakiville, IN, USA; 18) USC Norris Comprehensive Cancer Center and Hospital, Linversity of Southern California, CA, USA; 19) Netherlands Cancer Institute, Amsterdam, Netherlands; 20) Martini-Klinik Prostate Cancer Center, Melbourne, Vicoria, Australia; 23) Sir Peter MacCallum Cancer Center, Melbourne, Vicoria, Australia; 23) Sir Peter MacCallum Department of Oncology, University of Resource, MD Anderson Cancer Center, Indiversity, Forsona (Enter Fourts, Justial; 24) Division of Cancer Surgery, The University of Evast MD Anderson Cancer Center, Hoston, N, USA; 25) Kng's College London, London, UK.

Società Italiana di Uro-Oncologia

Objectives: Historically, poor functional outcomes and high complication rates are linked to salvage radical prostatectomy (sRP). Nevertheless, promising results are attained in recent sRP series. We aimed to assess functional outcomes and complications of sRP, comparing the robotic and open techniques.

Methods: From 2000 to 2016, we retrospectively collected data of sRP for recurrent prostate cancer (PCa) after local non-surgical treatment at 18 tertiary referral centers. Patients with: i) no functional outcomes or complications available; ii) follow up <6mo; were excluded from analysis. The Clavien-Dindo system was used to grade complications. We evaluated functional outcomes before sRP and at 6 and/or 1 year follow-up.

Results: We included 395 sRP (n=186 open; n=209 robotic). Comparing robotic and open cases, no significant baseline differences were

Table 1. Baseline clinical and imaging features	Imaging presRP % (n)		Open		Robot		Р
	Negative		127 (68.27)		127 (60.76)		0.25
	Prostate		37 (29.13)		49 (38.58)		
	Lymph nodes pelvis		76 (59.84)		70 (55.12)		
	Prostate + lymph nodes pelvis		2 (1.57)		3 (2.36)		
	Prostate + retroperitoneum nodes		11 (8.66)		5 (3.94)		
	Extranodal metastases		1 (0.79)		0		
	Mean (IQ range)					р	
	Age at sRP (ys)		66.7 (61.8-70.8)		66.2 (61.8-70.3)		0.65
	PSA at sRP (ng/mL)		5.79 (2.21-7.12)		6.89 (2.7-7.8)		0,12
	Follow up (ys)		4.13 (2.5-7)		2.4 (1.7–3.8)		<0,01
Table 2. Con and ED	Continence (all)	00	٥n		Robot		n
	Same or improved	63 (49.22)		117 (63.93)			0.055
	Mild Decrease	15 (11.72)		16 (8.74))			
	Moderate Decrease	11 (8.59)		15 (8.20)			
	Severe Decrease	39 (30.47		35 (19.13)			
	Erectile Function (all)						
	Unchanged	105 (86.78)		1	28 (85.33)		0.73
	Decreased	16 (13.22)			22 (14.67)		

present apart from follow up (p<0.001), pre-operative castration resistant PCa (p=0.0055) (higher for opens RP) and sRP Gleason (p=0.0159) (higher for robotic sRP). No extranodal metastasis was detected at pre-sRP imaging. Lower blood loss (p<0.0001) and shorter hospital stay (p<0.0001) were linked to robotic sRP, but no significant differences emerged in major (10.1%,p=0.16) and overall complications (34.9%,p=0.67). Risk of rectal injuries and fistulas were 1.58% and 2.02%, respectively; anastomotic stricture were more frequent in open-sRP (16.6% vs 7.7%; p<0.01).

Improved/unchanged continence occurred in 57.5%, while severe (\geq 3pads/day) incontinence was found in 24.6%; 8.1% had preserved spontaneous or PDE-5 assisted erections (15.6% potent before sRP had preserved erectile function compared to pre-sRP). Amongst nerve sparing procedures, three (11.5%) in 26 men preserved spontaneous or PDE-5 assisted erections. On multivariable analysis, robotic-sRP was an independent predictor for continence preservation (OR 0.411, 95% CI 0.232-0.727, p=0.022); previous hormonal treatment (OR 1.689, 95% CI 1.004-2.843, p=0.0484) and ASA score (OR 1.430, 95% CI 1.026-1.995, p=0.0349) were associated to the occurrence of at least one complication.

Conclusions: Nowadays, sRP shows a low risk of major complications and better functional outcomes than in past series. The robotic approach may reduce anastomotic strictures, blood loss, hospital stay, and improve continence.

