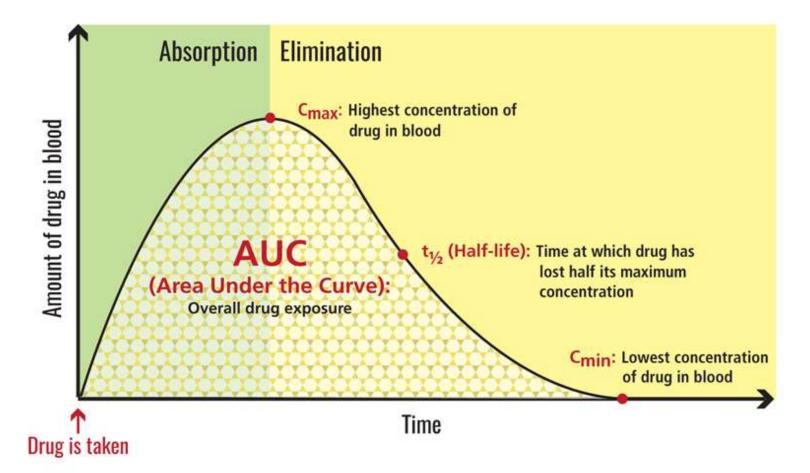

Le interazioni farmacologiche

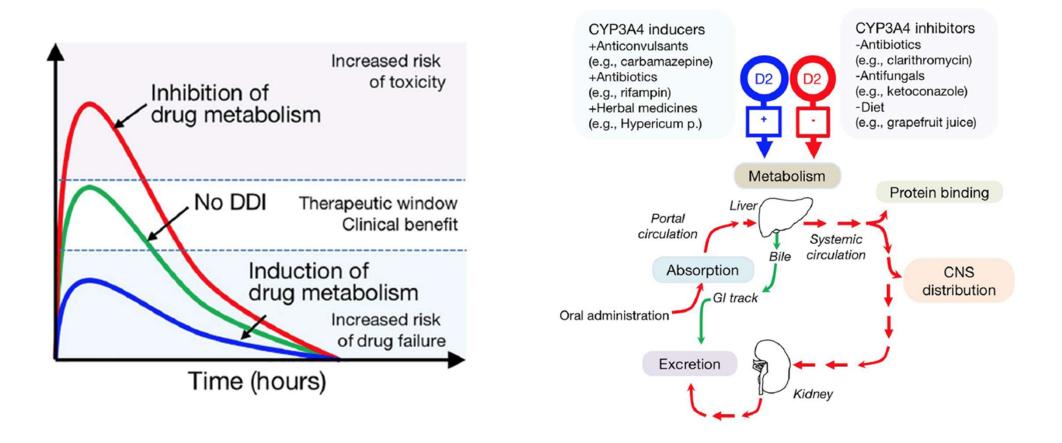
Marzia Del Re

UO Farmacologia clinica e Farmacogenetica

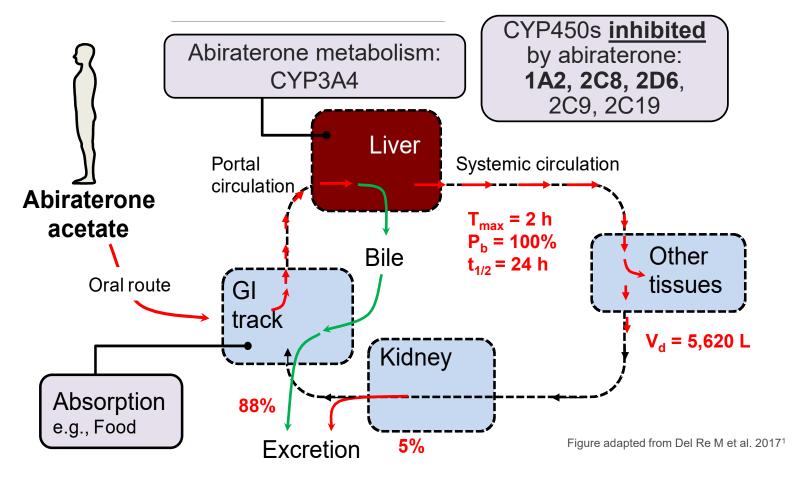

Università di Pisa

Potential mechanisms of drug interactions

May M, et al. Ther Adv Endocrinol Metab. 2016 Apr; 7(2): 69–83

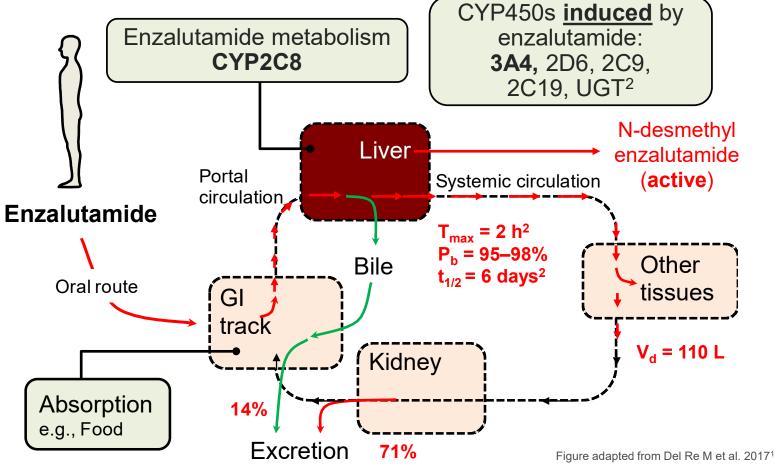

Pharmacokinetics (PK): Vocabulary

• AUC, area under the curve; C_{max}, maximum plasma concentration; C_{min}, minimum plasma concentration; PK, pharmacokinetics; t_{1/2}, half life.


Clinical Info. Available at: <u>https://clinicalinfo.hiv.gov/en/glossary/pharmacokinetics</u>. Accessed September 2021.

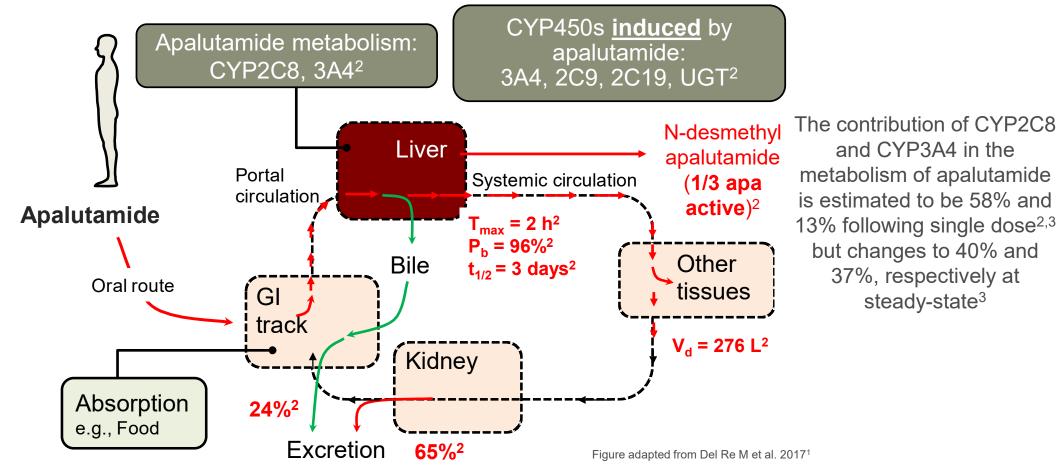
PK overview of DDIs effect

Fogli S, et al. Cancer Treatment Reviews 74 (2019) 21-28


Abiraterone

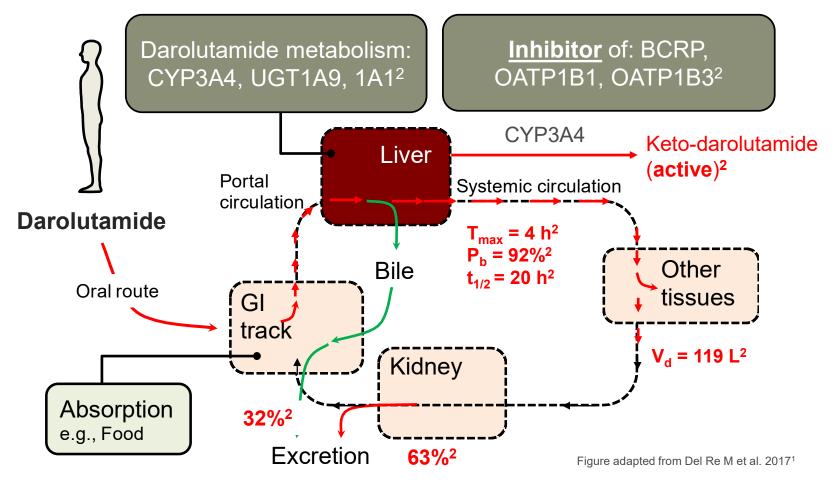
• GI, gastrointestinal; P_b, plasma protein binding; t_{1/2}, half life; T_{max}, time of maximum plasma concentration; V_d, mean apparent distribution volume.

• Del Re M et al. Cancer Treat Rev 2017;55:71–82.


Enzalutamide

• GI, gastrointestinal; P_b, plasma protein binding; t_{1/2}, half life; T_{max}, time of maximum plasma concentration; UGT, uridine 5'-diphospho-glucuronosyltransferase; V_d, mean apparent distribution volume.

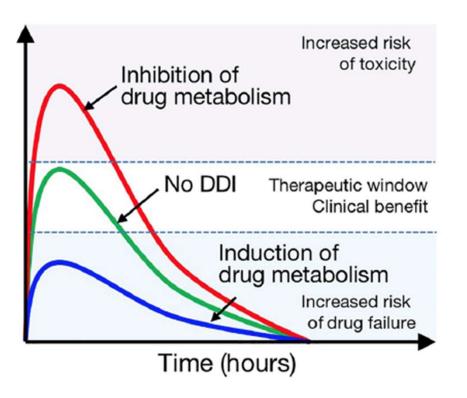
• 1. Del Re M et al. Cancer Treat Rev 2017;55:71–82; 2. Astellas Pharma Ltd. XTANDI (enzalutamide). Summary of Product Characteristics.


Apalutamide

apa, apalutamide; GI, gastrointestinal; P_b, plasma protein binding; t_{1/2}, half life; T_{max}, time of maximum plasma concentration; UGT, uridine 5'-diphospho-glucuronosyltransferase; V_d, mean apparent distribution volume.

1. Del Re M et al. Cancer Treat Rev 2017;55:71–82; 2. Janssen-Cilag Ltd. ERLEADA (apalutamide) Summary of Product Characteristics. Available at: https://www.medicines.org.uk/emc/product/9832.
Accessed September 2021; 3. Janssen-Cilag Ltd. ERLEADA (apalutamide) US Prescribing Information. Available at: https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/ERLEADA-pi.pdf.
Accessed September 2021.

Darolutamide


• GI, gastrointestinal; P_b, plasma protein binding; t_{1/2}, half life; T_{max}, time of maximum plasma concentration; V_d, mean apparent distribution volume.

1. Del Re M et al. Cancer Treat Rev 2017;55:71–82;
2. Bayer plc. NUBEQA (darolutamide) Summary of Product Characteristics. Available at: https://www.medicines.org.uk/emc/product/11324. Accessed September 2021.

Drugs & CYPs

Drug	Substrate	Inducer/inhibitor
Abiraterone	CYP3A4	Inhibitor of 1A2, 2C8, 2D6, 2C9, 2C19
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19
Apalutamide	CYP2C8, 3A4	Inducer of CYP3A4, 2D6, 2C9, 2C19
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3

PK overview of DDIs effect

Drug-drug interactions may further reduce the safety drugs with **narrow therapeutic index**

(e.g., anticancer and immunosuppressants, opioid analgesics, selected cardiovascular medications, anticoagulants - warfarin).

Fogli S, et al. Cancer Treatment Reviews 74 (2019) 21-28

Drug-drug interactions - Cardiovascular

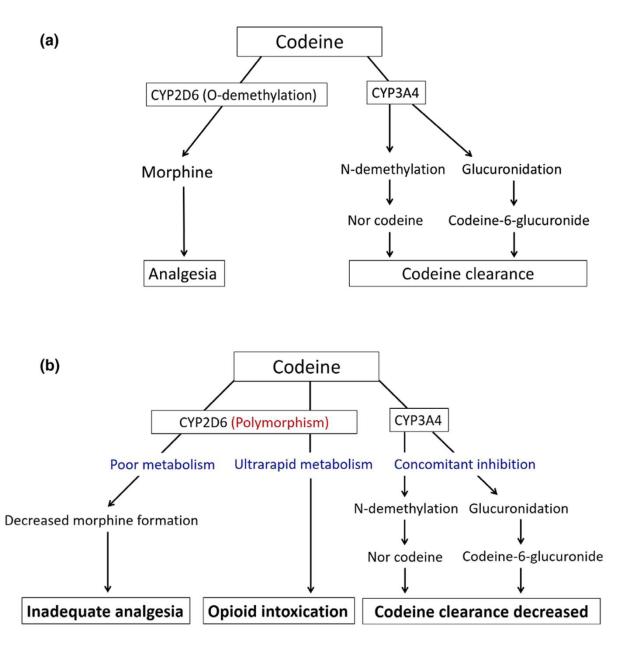
ADT	Substrate - metabolism	Induction/ inhibition	DDI effect	Concomitant drug	Substrate - metabolism	DDI effect
Apalutamide	СҮР2С8, ЗА4	Inducer of CYP3A4, 2D6, 2C9, 2C19	\checkmark		CES1, CES2,	\checkmark
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	X Victim	Dabigatran	UGT1A9, 2B7, 2B15, PgP	X Victim
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	\checkmark			\checkmark
Apalutamide	CYP2C8, 3A4	Inducer of CYP3A4, 2D6, 2C9, 2C19	Perpetrator		CYP3A4/5,	<mark>X</mark> Victim
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	Perpetrator	Apixaban	1A2, 2C8, 2C9, 2C19, 2J2,	Victim Victim
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	Perpetrator		PgP, BCRP	X Victim
Apalutamide	СҮР2С8, ЗА4	Inducer of CYP3A4, 2D6, 2C9, 2C19	Perpetrator			<mark>x</mark> Victim
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	Perpetrator	Rivaroxaban	CYP3A4, 3A5, CYP2J2, PgP, BCRP	X Victim
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	Perpetrator			X Victim

https://go.drugbank.com/drugs/

Drug-drug interactions - Diabetes

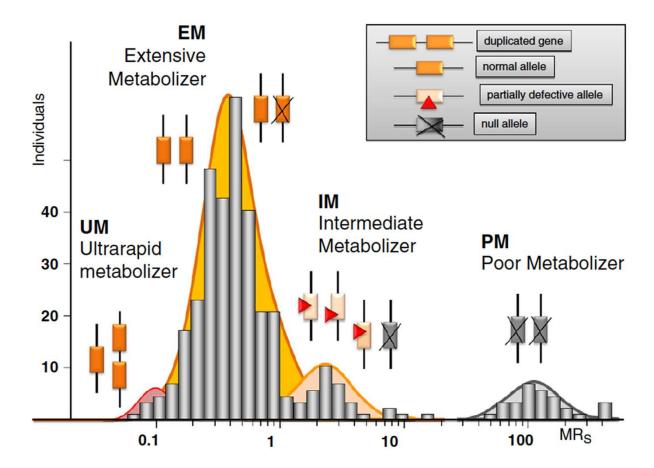
ADT	Substrate - metabolism	Induction/ inhibition	DDI effect	Concomitant drug	Substrate/ metabolism	DDI effect
Apalutamide	СҮР2С8, ЗА4	Inducer of CYP3A4, 2D6, 2C9, 2C19	<mark>X</mark> Victim			Perpet rator
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	X Victim	Metformin	CYP3A4 down- regulation	Perpet rator
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	\checkmark			\checkmark
Apalutamide	СҮР2С8, ЗА4	Inducer of CYP3A4, 2D6, 2C9, 2C19	\checkmark			X Victim
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	\checkmark	Phenformin	CYP2D6	\checkmark
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	\checkmark			X Victim
Apalutamide	СҮР2С8, ЗА4	Inducer of CYP3A4, 2D6, 2C9, 2C19	\checkmark			X Victim
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	\checkmark	Gliben- clamide	CYP3A4, 2C9, 2C8	\checkmark
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	\checkmark			X Victim

https://go.drugbank.com/drugs/

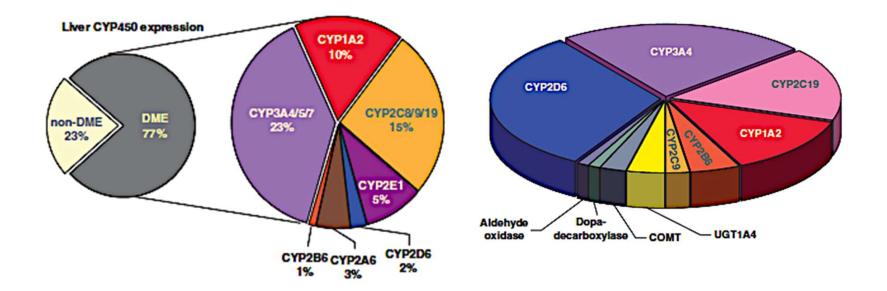

Drug-drug interactions - Hypertension

ADT	Substrate - metabolism	Induction/ inhibition	DDI effect	Concomitant drug	Substrate/ metabolism	DDI effect
Apalutamide	CYP2C8, 3A4	Inducer of CYP3A4, 2D6, 2C9, 2C19	X Victim		CYP2C9 <i>,</i> 3A4,2C8,	X Victim
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	X Victim	Losartan	CYP2C8 and 3A4	X Victim
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	X Victim			X Victim
Apalutamide	CYP2C8, 3A4	Inducer of CYP3A4, 2D6, 2C9, 2C19	X Victim		CYP3A4, 1A1, 2B6,	X Victim
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	X Victim	Amlodipine	2C8, 2D6, UGT, PgP	<mark>X</mark> Victim
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	X Victim		Inhibitor of CYP1A1, 3A4, 2B6, 2C9, 2C8	X Victim
Apalutamide	CYP2C8, 3A4	Inducer of CYP3A4, 2D6, 2C9, 2C19	\checkmark			\checkmark
Darolutamide	CYP3A4, UGT1A9, 1A1, 1A3, 2B10	Inhibitor of BCRP, PgP, OATP1B1, OATP1B3	\checkmark	Hydrochloro thiazide	No metabolism	\checkmark
Enzalutamide	CYP2C8	Inducer of 3A4, 2D6, 2C9, 2C19	\checkmark			\checkmark

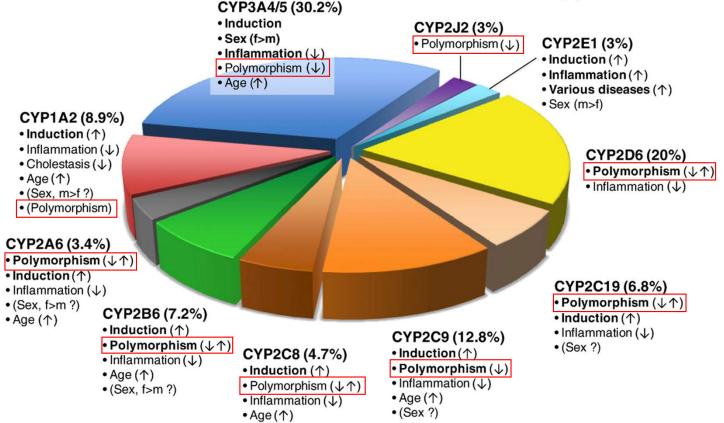
https://go.drugbank.com/drugs/


	VALUTAZIONE COMPARATA DELLA FARMACOCINETICA					
Sartani	Losartan	Eprosartan	Valsartan	Irbesartan	Candesartan	Telmisartan
Jarlann	Biodisponibilità: circa 33%	Biodisponibilità : circa 13%	Biodisponibilità : circa 23%	Biodisponibilità : circa 60 - 80%	Biodisponibilità: circa 14 %	Biodisponibilità: circa 42 - 58%
	Cibo : nessun effetto su AUC / Cmax	Cibo : riduzione di circa il 25% della Cmax e dell'AUC	Cibo: riduzione della Cmax di circa il 50% e dell'AUC del 40%	Cibo : non influenza la biodisponibilità	Cibo: non influenza la biodisponibilità	Cibo : riduzione della AUC dal 6% al 20% in base al dosaggio
	Metabolismo: epatico di 1° passaggio con formazione di un metabolita attivo (14% della quota di farmaco) e altri inattivi, tramite il citocromo P450 2C9 e gli isoenzimi 3A4	Metabolismo: epatico per una ridotta quota di farmaco, mediante coniugazione a glucuronide	Metabolismo: epatico per circa il 20% della quota di farmaco (con probabile coinvolgimento di isoenzimi del citocromo P450)	Metabolismo: epatico per una quota di farmaco < 20%, mediante ossidazione con isoenzimi del citocromo P450 (in particolare 2C9)	Metabolismo: epatico per una ridotta quota di farmaco con formazione di un metabolita inattivo	Metabolismo: epatico mediante coniugazione a glucuronide, metabolita inattivo (circa 11% della quota di farmaco)
	Emivita : circa 2 h (6-9 h per il metabolita attivo)	Emivita : circa 5-9 h	Emivita : circa 6 h	Emivita : circa 11-15 h	Emivita: circa 9 h	Emivita : circa 24 h
	Legame proteico: ≥ 99%	Legame proteico: 98%	Legame proteico: 94-97 %	Legame proteico: 96%	Legame proteico: > 99%	Legame proteico: > 99,5%
	Eliminazione: per via biliare (60%) e per via urinaria (35%). Né losartan né il suo me- tabolita attivo vengono rimossi con emodialisi.	Eliminazione: principalmente per via biliare (90%); il 7% per via urinaria.	Eliminazione: principalmente per via biliare (83%); il 13% per via urinaria.	Eliminazione: principalmente per via biliare (80%); il 20% per via urinaria.	Eliminazione: per via biliare (67%) e per via urinaria (33%).	Eliminazione: quasi completamente per via biliare (97%).

Opioids

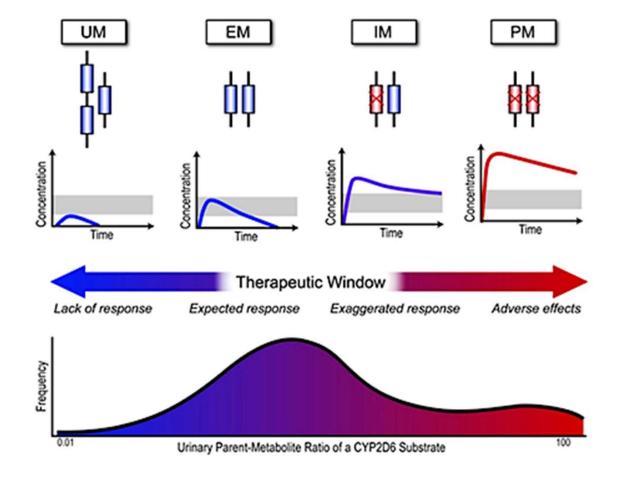

Anaesthesia 2019, 74, 1456-1470

Phenotype and genotype distribution and nomenclature



Zanger UM, Schwab M. Pharmacology & Therapeutics 138 (2013) 103-141

Relative amount of the CYP450 enzymes in the liver and their role in drug metabolism



Fraction of clinically used drugs metabolized by P450 isoforms and factors influencing variability

Zanger UM, Schwab M. Pharmacology & Therapeutics 138 (2013) 103–141

Relative contribution of individual DMEs in the metabolism

Selected genetic polymorphisms of human CYP3A4/5

CYP allele designation ^a	Key mutation(s) ^b rs number	Location, protein effect	Allele frequencies ^c	Functional effect
CYP3A4*22	15389 C>T	Intron 6	gMAF 0.021	↓ Expression & activity
	(rs35599367)		0.043 AA	
			0.043 As	
			0.025-0.08 Ca	
CYP3A5*3	6986A>G (rs776746)	Intron 3, splicing defect	gMAF 0.312	↓↓ Expression & activity
			0.37 AA	
			0.12-0.35 Af	
			0.66-0.75 As, Hs	
			0.88-0.97 Ca	
CYP3A5*6	14690A>G	Exon 6, K208, splicing	gMAF 0.045	↓↓ Expression & activity
	(rs10264272)	defect	0.15-0.25 Af	
			0.12 AA	
			0.00 As, Ca, His	

gMAF, global allele frequency of the minor allele as reported in the 1000Genome phase 1 genotype data. Selected frequencies of individual ethnicities (AA, African American; Af African; As Asian; Ar, Arab; Ca Caucasian; Hs, Hispanic; In, Indian; Pc, Pacific; SA, South American) were compiled from dbSNP.

Zanger UM, Schwab M. Pharmacology & Therapeutics 138 (2013) 103–141

Selected genetic polymorphisms of human CYP2D6

CYP allele designation ^a	Key mutation(s) ^b rs number	Location, protein effect	Allele frequencies ^c	Functional effect
CYP2D6*3	2549delA (rs35742686)	Frameshift	gMAF 0.009 ~0.01 all ethnicities	Null allele
CYP2D6*4	1846G>A (rs3892097)	Splicing defect	gMAF 0.106 0.01-0.10 AA, Af, As, Hs 0.15-0.25 Ca	Null allele
CYP2D6*5	Recombination	Deletion	0.03–0.06 all ethnicities	Null allele
CYP2D6*6	1707delT (rs5030655)	Frameshift	gMAF 0.01 ~0.01 all ethnicities	Null allele

gMAF, global allele frequency of the minor allele as reported in the 1000Genome phase 1 genotype data. Selected frequencies of individual ethnicities (AA, African American; Af African; As Asian; Ar, Arab; Ca Caucasian; Hs, Hispanic; In, Indian; Pc, Pacific; SA, South American) were compiled from dbSNP.

Zanger UM, Schwab M. Pharmacology & Therapeutics 138 (2013) 103–141

Take home messages

- Due to the different induction and inhibition of CYPs and transporters a different DDI profile is expected.
- Drug-drug interactions may further reduce the safety of drugs with narrow therapeutic index (e.g., anticancer and immunosuppressants, opioid analgesics, selected cardiovascular medications, anticoagulants - warfarin).
- Interaction between drugs with narrow therapeutic index should be carefully evaluated and, whenever a drug substitution is not possible, therapeutic drug monitoring should be performed.


With your genes? Take one of these, three times a day

Truly 'personalized' medicine remains a distant goal. But researchers are now thinking about how to use

genomic data to avoid prescribing drugs that may kill, or won't work. Alison Abbott reports.

My pharmacogenetic ID

